Abstract
Social media data can provide a general idea of people’s response towards the COVID-19 outbreak and its reflections, but it cannot be as objective as the news articles as a source of information. They are valuable sources of data for natural language processing research as they can reveal various paradigms about different phenomena related to the pandemic. This study uses a news collection spanning nine months from 2019 to 2020, containing COVID-19 related articles from various organizations around the world. The investigation conducted on the collection aims at revealing the repercussions of the pandemic at multiple levels. The first investigation discloses the most mentioned problems covered during the pandemic using statistics. Meanwhile, the second investigation utilizes machine learning to determine the most prevalent topics present within the articles to provide a better picture of the pandemic-induced issues. The results show that the economy was among the most prevalent problems. The third investigation constructs lexical networks from the articles, and reveals how every problem is related through nodes and weighted connections. The findings exhibit the need for more research using machine learning and natural language processing techniques on similar data collections to unveil the full repercussions of the pandemic.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.