Abstract

A graph G is said to be conditional k-edge-fault pancyclic if after removing k faulty edges from G, under the assumption that each vertex is incident to at least two fault-free edges, the resulting graph contains a cycle of every length from its girth to | V ( G ) | . In this paper, we consider ternary n-cube networks and show that they are conditional ( 4 n − 5 ) -edge-fault pancyclic.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.