Abstract

Background Pancreatic neuroendocrine tumors (PNET) include heterogeneous tumors with a variable degree of inherent biologic aggressiveness represented by the histopathologic grade. Although several studies investigated the computed tomography (CT) characteristics which can predict the histopathologic grade of PNET, accurate prediction of the PNET grade by CT examination alone is still limited. Purpose To investigate the important CT findings and CT texture variables for prediction of grade of PNET. Material and Methods Sixty-six patients with pathologically confirmed PNETs (grade 1 = 45, grades 2/3 = 21) underwent preoperative contrast-enhanced CT. Two reviewers determined the presence of predefined CT findings. CT texture was also analyzed on arterial and portal phase using both two-dimensional (2D) and three-dimensional (3D) analysis. Multivariate logistic regression analysis was performed in order to identify significant predictors for tumor grade. Results Among CT findings and CT texture variables, the significant predictors for grade 2/3 tumors were an ill-defined margin (odds ratio [OR] = 7.273), lower sphericity (OR = 0.409) on arterial 2D analysis, higher skewness (OR = 1.972) and lower sphericity (OR = 0.408) on arterial 3D analysis, lower kurtosis (OR = 0.436) and lower sphericity (OR = 0.420) on portal 2D analysis, and a larger surface area (OR = 2.007) and lower sphericity (OR = 0.503) on portal 3D analysis ( P < 0.05). Diagnostic performance of texture analysis was superior to CT findings (AUC = 0.774 vs. 0.683). Conclusion CT is useful for predicting grade 2/3 PNET using not only the imaging findings including an ill-defined margin, but also the CT texture variables such as lower sphericity, higher skewness, and lower kurtosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.