Abstract

Lipase-catalyzed hydrolysis of fatty acid esters of 3-hydroxymethyl phenytoin was studied in various triglyceride and ethyl oleate emulsions, dispersed in micellar solutions, and suspended in an aqueous buffered solution. Phenytoin release from ethyl oleate emulsions of the prodrugs show apparent first-order kinetics with the pentanoate to nonanoate derivatives and sigmoidal kinetics with the long-chain fatty acid derivatives (stearate and oleate). A transition in the kinetic behavior, between the short- and the long-chain acyl prodrugs, was observed with the decanoate derivative. These observations are accounted for by a proposed kinetic model. Phenytoin release from the solid prodrugs follows zero-order kinetics and is independent of the total amounts of suspended material but directly proportional to the lipase concentration. Lipolysis of the solid suspended prodrugs was dependent on the length of the acyl side chain of the prodrug, with maxima for the pentanoate and the octanoate derivatives. The short-chain derivatives, acetate and propionate, as well as the long-chain prodrug, stearate, showed the slowest lipolysis rate when present as solid dispersions. The zero-order rate is qualitatively correlated with the melting point of the prodrugs. This result might be expected if the melting point is taken as a measure of the cohesivity or packing of the molecules at the surface of a crystal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call