Abstract

Pancreatic islet transplantation via infusion through the portal vein, has become an established clinical treatment for patients with type 1 diabetes. Because the engraftment efficiency is low, new approaches for pancreatic islets implantation are sought. The goal of this study is to explore the possibility that a non-thermal irreversible electroporation (NTIRE) decellularized matrix in the liver could be used as an engraftment site for pancreatic islets. Pancreatic islets or saline controls were injected at sites pre-treated with NTIRE in the livers of 7 rats, 16 hours after NTIRE treatment. Seven days after the NTIRE treatment, islet graft function was assessed by detecting insulin and glucagon in the liver with immunohistochemistry. Pancreatic islets implanted into a NTIRE-treated volume of liver became incorporated into the liver parenchyma and produced insulin and glucagon in 2 of the 7 rat livers. Potential reasons for the failure to observe pancreatic islets in the remaining 5/7 rats may include local inflammatory reaction, graft rejection, low numbers of starting islets, timing of implantation. This study shows that pancreatic islets can become incorporated and function in an NTIRE-generated extracellular matrix niche, albeit the success rate is low. Advances in the field could be achieved by developing a better understanding of the mechanisms of failure and ways to combat these mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call