Abstract

Sustained exposure to lipids is deleterious for pancreatic islet function. This could be mediated through increased pancreatic fat following increased dietary fat and in obesity, which has implications for the onset of type 2 diabetes. The aims of this study were to determine changes in extent and composition of pancreatic, hepatic, and visceral fat in mice fed a high-fat diet (HFD, 40% by weight) compared with a control diet (5% fat) of similar fatty acid composition, and to compare composition and extent of pancreatic fat in human type 2 diabetes. Mice were fed HFD for 3 or 15 weeks. Human postmortem pancreas was examined from subjects with type 2 diabetes (n = 9) and controls (n = 7). Tissue lipid content and composition were determined by gas chromatography and pancreatic adipocyte infiltration quantified by morphometry. Pancreatic triacylglycerol (TG) content was 20x greater (P < 0.05) in HFD mice and there were more pancreatic perilipin-positive adipocytes compared with controls after 15 weeks. The proportions of 18:1n -9 and 18:2n -6 in pancreatic TG and the 20:4n -6/18:2n -6 ratio in phospholipids, were higher (both P < 0.05) after HFD compared with controls. Human pancreatic TG content was correlated with the proportion of pancreatic perilipin-positive adipocytes (r = 0.64, P < 0.05) and associated with unsaturated fatty acid enrichment (P < 0.05). Adipocyte infiltration in pancreatic exocrine tissue is associated with high-fat feeding in mice and pancreatic TG content in humans. This alters the fatty acid milieu of the islet which could contribute to islet dysfunction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.