Abstract

PanINs and IPMNs are the two most common precursor lesions that can progress to invasive pancreatic ductal adenocarcinoma (PDA). DCLK1 has been identified as a biomarker of progenitor cells in PDA progressed from PanINs. To explore the potential role of DCLK1-expressing cells in the genesis of IPMNs, we compared the incidence of DCLK1-positive cells in pancreatic tissue samples from genetically-engineered mouse models (GEMMs) for IPMNs, PanINs, and acinar to ductal metaplasia by immunohistochemistry and immunofluorescence. Mouse lineage tracing experiments in the IPMN GEMM showed that DCLK1+ cells originated from a cell lineage distinct from PDX1+ progenitors. The DCLK1+ cells shared the features of tuft cells but were devoid of IPMN tumor biomarkers. The DCLK1+ cells were detected in the earliest proliferative acinar clusters prior to the formation of metaplastic ductal cells, and were enriched in the “IPMN niches”. In summary, DCLK1 labels a unique pancreatic cellular lineage in the IPMN GEMM. The clustering of DCLK1+ cells is an early event in Kras-induced pancreatic tumorigenesis and may contribute to IPMN initiation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.