Abstract

Pancreatic cancer is an aggressive solid malignancy with poor response to therapy and the subsequent dismal survival rate has remained a hallmark of this disease. There is evidence to indicate that pancreatic cancer is initiated and propagated by cancer stem cell (CSC)s. The CSC population is defined by its tumor initiating capacity and has been shown to be invasive or metastatic. Loss of genome stability is a hallmark of cancer with DNA repair enzymes aiding in maintenance of stability. The potential to assess the risk of cancer development lies in careful determination of one’s capacity in nurturing genome stability. DNA repair genes are over expressed in CSCs and both pancreatic CSCs and invasive cells in turn provide greater DNA damage response and repair mechanisms. Pancreatic tumor-initiating cells as well as invasive cells have a large number of genes related to DNA repair. RAD51, the key player in the recombinational repair of damaged DNA might act as a critical mediator of efficient DNA repair mechanisms of CSCs. We update here the current research results regarding CSCs in pancreatic cancer progression, metastasis and discuss the DNA repair mechanism in pancreatic CSCs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call