Abstract

Tumor resistance to chemoradiation therapy is partly attributed to the presence of apoptosis-resistant cancer stem cells (CSCs). Chemoradiation therapy can enrich CSCs by killing apoptosis-susceptible cancer cells. Our preliminary study showed chemoradiation-resistant pancreatic cancer cells to have some CSC characteristics, and to undergo epithelial-mesenchymal transition (EMT); we aimed to verify that study's implication that chemoradiation-resistant subpopulations are enriched with "stem-cell-like" tumor cells, which may be linked to EMT. Four pancreatic cancer cell lines were cultured in gemcitabine with synchronous radiotherapy to obtain resistant subpopulations. Morphological changes were observed under microscope; migration and invasiveness were assessed by Transwell tests. Protein expression was determined by immunoblotting. Pancreatic CSC markers were studied using fluorescence-activated cell sorting analyses. Colony-formation tests, tumor sphere formation assays, and tumor xenografts in BALB/C nude mice were used to evaluate "stemness" in resistant cells. Resistant cells expressed more antiapoptotic protein Bcl-2, apoptosis-inhibitory protein survivin, and stem cell markers Oct4, ABCG2, CD24, and CD133, were more tumorigenic in vitro and in vivo, and showed phenotypic and molecular changes consistent with EMT, including upregulation of vimentin and downregulation of E-cadherin. They were also more invasive and migratory. We found chemoradiation-resistant pancreatic cancer cells to be similar to CSCs and to undergo EMT, suggesting that chemoradiation resistance-induced EMT is linked to CSC generation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.