Abstract

Simple SummaryLymphatic metastasis of pancreatic cancer is an important factor leading to poor prognosis of patients. In order to explore the relevant mechanism, we designed research and found that pancreatic cancer cell-derived exosomes promote lymphangiogenesis by downregulating the ABHD11-AS1 expression. This finding provides a new therapeutic strategy for inhibiting lymphatic metastasis metastasis in pancreatic cancer. Research on pancreatic cancer microbiomes has attracted attention in recent years. The current view is that enriched microbial communities in pancreatic cancer tissues may affect pancreatic cancer metastasis, including lymph node (LN) metastasis. Similar to carriers of genetic information between cells, such as DNA, mRNA, protein, and non-coding RNA, exosomes are of great importance in early LN metastasis in tumors, including pancreatic cancer. Our previous study showed that the long non-coding RNA ABHD11-AS1 was highly expressed in tissues of patients with pancreatic cancer, and was correlated with patient survival time. However, the role of ABHD11-AS1 in pancreatic cancer LN metastasis has rarely been studied. Hence, in this paper we confirmed that exosomes derived from pancreatic cancer cells could promote lymphangiogenesis in vitro and in vivo, and that the mechanism was related to the downregulation of ABHD11-AS1 expression in lymphatic endothelial cells, and to the enhancement of their ability to proliferate, migrate, and form tubes. These findings preliminarily show a new mechanism by which pancreatic cancer cells regulate peripheral lymphangiogenesis, providing a new therapeutic strategy for inhibiting LN metastasis in pancreatic cancer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call