Abstract

We measured serum C-peptide (at least 0.167 nmol/l) in 54 of 141 (38%) patients with chronic type 1 diabetes and sought factors that might differentiate those with detectable C-peptide from those without it. Finding no differences, and in view of the persistent anti-beta cell autoimmunity in such patients, we speculated that the immunosuppression (to weaken autoimmune attack) and euglycaemia accompanying transplant-based treatments of type 1 diabetes might promote recovery of native pancreatic beta cell function. We performed arginine stimulation tests in three islet transplant and four whole-pancreas transplant recipients, and measured stimulated C-peptide in select venous sampling sites. On the basis of each sampling site's C-peptide concentration and kinetics, we differentiated insulin secreted from the individual's native pancreatic beta cells and that secreted from allografted beta cells. Selective venous sampling demonstrated that despite long-standing type 1 diabetes, all seven beta cell allograft recipients displayed evidence that their native pancreas secreted C-peptide. Yet even if chronic immunosuppression coupled with near normal glycaemia did improve native pancreatic C-peptide production, the magnitude of the effect was quite small. Some native pancreatic beta cell function persists even years after disease onset in most type 1 diabetic patients. However, if prolonged euglycaemia plus anti-rejection immunosuppressive therapy improves native pancreatic insulin production, the effect in our participants was small. We may have underestimated pancreatic regenerative capacity by studying only a limited number of participants or by creating conditions (e.g. high circulating insulin concentrations or immunosuppressive agents toxic to beta cells) that impair beta cell function.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call