Abstract
To elucidate the regulatory pathway through which pancreastatin inhibits insulin secretion, RINm5F insulinoma cells were challenged with physiological and pharmacological probes known to stimulate insulin release through different mechanisms. Utilizing the electrophysiological technique of capacitance measurements as a correlate to exocytosis, pancreastatin was found to significantly diminish maximum capacitance changes evoked by glyceraldehyde, an effect which was attenuated in pertussis toxin-treated cells. In static incubations of this cell line, pancreastatin significantly inhibited insulin secretion stimulated by glyceraldehyde, carbachol and A23187, secretagogues known to directly elevate β-cell cytosolic Ca 2+. This peptide also inhibited insulin secretion stimulated by phorbol myristate acetate (PIVIA), but only at incubation times ≤15 min. It was without effect on insulin secretion stimulated by mastoparan and longer incubations (30 min) with PMA, where the secretory mechanisms are not necessarily Ca 2+-dependent. Additionally, pancreastatin had no effect on carbachol-generated inositol phosphate accumulation but inhibited simultaneously stimulated insulin secretion. All inhibitory effects of pancreastatin were pertussis toxin sensitive. These results suggest that pancreastatin inhibits insulin secretion in RINm5F cells through a G-protein regulated mechanism at a control point involved in the Ca 2+-directed exocytotic machinery, a feature shared by other physiologic inhibitors of insulin secretion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.