Abstract
Squaraine compounds are currently investigated as high performance active components in both organic and hybrid photovoltaic devices as well as in photodetectors. Their most valuable features include a particularly efficient optical absorption in the Vis-NIR region, high polarizability, and a remarkable chemical stability. Their full exploitation is somewhat limited by a negligible absorption in the UV-Vis region (prototypical squaraines basically do not absorb below 500 nm). The aim of the present paper is the design and synthesis of truly panchromatic squaraines to be effectively employed as the photoactive materials in Vis operating optoelectronic devices. Our strategy involves the design of squaraines that are both nonsymmetric and core-substituted with suitable electron-withdrawing groups. We show the effect of such a design strategy by means of UV-Vis spectroscopy, cyclic voltammetry and prototypical device performances rationalization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.