Abstract
The iconic planetary nebula (PN) NGC 7027 is bright, nearby (D ∼ 1 kpc), highly ionized, intricately structured, and well observed. This nebula is hence an ideal case study for understanding PN shaping and evolution processes. Accordingly, we have conducted a comprehensive imaging survey of NGC 7027 comprised of 12 HST Wide Field Camera 3 images in narrow-band and continuum filters spanning the wavelength range 0.243–1.67 μm. The resulting panchromatic image suite reveals the spatial distributions of emission lines covering low-ionization species such as singly ionized Fe, N, and Si, through H recombination lines, to more highly ionized O and Ne. These images, combined with available X-ray and radio data, provide the most extensive view of the structure of NGC 7027 obtained to date. Among other findings, we have traced the ionization structure and dust extinction within the nebula in subarcsecond detail; uncovered multipolar structures actively driven by collimated winds that protrude through and beyond the PN’s bright inner core; compared the ionization patterns in the WFC3 images to X-ray and radio images of its interior hot gas and to its molecular outflows; pinpointed the loci of thin, shocked interfaces deep inside the nebula; and more precisely characterized the central star. We use these results to describe the recent history of this young and rapidly evolving PN in terms of a series of shaping events. This evolutionary sequence involves both thermal and ram pressures, and is far more complex than predicted by extant models of UV photoionization or winds from a single central progenitor star, thereby highlighting the likely influence of an unseen binary companion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.