Abstract

Spatial and spectral information are essential sources of information in remote sensing applications, and the fusion of panchromatic and multispectral images effectively combines the advantages of both. Due to the existence of two main classes of fusion methods—component substitution (CS) and multi-resolution analysis (MRA), which have different advantages—mixed approaches are possible. This paper proposes a fusion algorithm that combines the advantages of generalized intensity–hue–saturation (GIHS) and non-subsampled shearlet transform (NSST) with principal component analysis (PCA) technology to extract more spatial information. Therefore, compared with the traditional algorithms, the algorithm in this paper uses PCA transformation to obtain spatial structure components from PAN and MS, which can effectively inject spatial information while maintaining spectral information with high fidelity. First, PCA is applied to each band of low-resolution multispectral (MS) images and panchromatic (PAN) images to obtain the first principal component and to calculate the intensity of MS. Then, the PAN image is fused with the first principal component using NSST, and the fused image is used to replace the original intensity component. Finally, a fused image is obtained using the GIHS algorithm. Using the urban, plants and water, farmland, and desert images from GeoEye-1, WorldView-4, GaoFen-7 (GF-7), and Gaofen Multi-Mode (GFDM) as experimental data, this fusion method was tested using the evaluation mode with references and the evaluation mode without references and was compared with five other classic fusion algorithms. The results showed that the algorithms in this paper had better fusion performances in both spectral preservation and spatial information incorporation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call