Abstract

Disulfidptosis has been reported as a novel cell death process, suggesting a therapeutic strategy for cancer treatment. Herein, we constructed a multiomics data analysis to reveal the effects of disulfidptosis in tumors. Data for 33 kinds of tumors were downloaded from UCSC Xene, and disulfidptosis-related genes (DRGs) were selected from a previous study. After finishing processing data by the R packages, the expression and coexpression of DRGs in different tumors were assessed as well as copy number variations. The interaction network was drawn by STRING, and the activity of disulfidptosis was compared to the single-sample gene set enrichment analysis algorithm. Subsequently, the differences in DRGs for prognosis and clinicopathological features were evaluated, and the tumor immune microenvironment was assessed by the TIMER and TISCH databases. Tumor mutation burden, stem cell features and microsatellite instability were applied to predict drug resistance, and the expression of checkpoints was identified for the prediction of immunotherapy. Moreover, the TCIA, CellMiner and Enrichr databases were also utilized for selecting potential agents. Ten DRGs were differentially expressed in tumors, and the plots of coexpression and interaction revealed their correlation. Survival analysis suggested SLC7A11 as the most prognosis-related DRG with the most significant results. Additionally, the comparison also reflected the differences in DRGs in the status of pathologic lymph node metastasis for 5 types of tumors. The tumor immune microenvironment showed commonality among tumors based on immune infiltration and single-cell sequencing, and the analysis of tumor mutation burden, stemness and microsatellite instability showed a mostly positive correlation with DRGs. Moreover, referring to the prediction about clinical treatment, most DRGs can enhance sensitivity to chemotherapeutic agents but decrease the response to immune inhibitors with increasing expression. In this study, a primarily synthetic landscape of disulfidptosis in tumors was established and provided guidance for further exploration and investigation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.