Abstract

This study aims to explore the role of SKA1 in cancer diagnosis and prognosis and to investigate the mechanism by which SKA1 affects the malignant behaviors of ovarian cancer. Herein, we analyzed the oncogenic role of SKA1 at pan-cancer level by multiple informatics databases and verified the analysis by in vitro experiments. As a result, SKA1 was upregulated across cancers and was related to poor clinical outcome and immune infiltration. Specifically, the constructed nomogram showed superior performance in predicting the prognosis of epithelial ovarian cancer patients. Furthermore, the in vitro experiments revealed that silencing SKA1 significantly inhibited the proliferation, migratory ability and enhanced the cisplatin sensitivity of ovarian cancer cells. Therefore, we explored the oncogenic and potential therapeutic role of SKA1 across cancers through multiple bioinformatic analysis and revealed that SKA1 may promote ovarian cancer progression and chemoresistance to cisplatin by activating the AKT-FOXO3a signaling pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.