Abstract

BackgroundCardiac atrophy and reduced cardiac distensibility have been reported following space flight. Cardiac function is correspondingly regulated in response to changes in loading conditions. Panax quinquefolium saponin (PQS) improves ventricular remodeling after acute myocardial infarction by alleviating endoplasmic reticulum stress and Ca2+overload. However, whether PQS can ameliorate cardiac atrophy following exposure to simulated microgravity remains unknown. PurposeTo explore the protective role of PQS in cardiac remodeling under unloading conditions and its underlying mechanisms. MethodsHindlimb unloading (HU) model was used to simulate unloading induced cardiac remodeling. Forty-eight male rats were randomly assigned to four groups, including control, PQS, HU and HU + PQS. At 8 weeks after the experiment, cardiac structure and function, serum levels of Creatine Kinase-MB (CK-MB), Cardiactroponin T (cTnT), ischemia modified albumin (IMA), and cardiomyocyte apoptosis were measured. Network pharmacology analysis was used to predict the targets of the six major constituents of PQS, and the signaling pathways they involved in were analyzed by bioinformatics methods. Changes in the key proteins involved in the protective effects of PQS were further confirmed by Western Blot. ResultsSimulated microgravity led to increases in serum levels of CK-MB, cTnT and IMA, remodeling of cardiac structure, impairment of cardiac function, and increased cardiomyocyte apoptosis as compared with control. PQS treatment significantly reduced serum levels of CK-MB, cTnT and IMA, improved the impaired cardiac structure and function, and decreased cardiomyocyte apoptosis induced by unloading. The activation of AMPK and inhibition of Erk1/2 and CaMKII/HDAC4 were demonstrated in the cardiocytes of HU rats after PQS treatment. ConclusionPQS provides protection against cardiac remodeling induced by simulated microgravity, partly resulting from changes in the signaling pathways related to energy metabolism reduction, calcium overloading and cell apoptosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.