Abstract

The recent outbreak of novel Coronavirus disease or COVID-19 is declared a pandemic by the World Health Organization (WHO). The availability of social media platforms has played a vital role in providing and obtaining information about any ongoing event. However, consuming a vast amount of online textual data to predict an event's trends can be troublesome. To our knowledge, no study analyzes the online news articles and the disease data about coronavirus disease. Therefore, we propose an LDA-based topic model, called PAN-LDA (Pandemic-Latent Dirichlet allocation), that incorporates the COVID-19 cases data and news articles into common LDA to obtain a new set of features. The generated features are introduced as additional features to Machine learning(ML) algorithms to improve the forecasting of time series data. Furthermore, we are employing collapsed Gibbs sampling (CGS) as the underlying technique for parameter inference. The results from experiments suggest that the obtained features from PAN-LDA generate more identifiable topics and empirically add value to the outcome.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.