Abstract

Hydrogen sulfide (H2S) is a significant endogenous mediator that has been implicated in the progression of various forms of cancer including breast cancer (BC). Cystathionine-β-synthase (CBS), cystathionine-γ-lyase (CSE), and 3-mercaptopyruvate sulfurtransferase (3MST) are the three principal mammalian enzymes responsible for H2S production. Overexpression of CBS, CSE and 3MST was found to be associated with poor prognosis of BC patients. Moreover, H2S was linked to an immune-suppressive tumor microenvironment in BC. Recently it was observed that BC cells, in response to single or dual inhibition of H2S synthesizing enzymes, develop an escape mechanism by overexpressing alternative sources of H2S generation. Thus, the aim of this work is to escape the H2S compensatory mechanism by pan repressing the three enzymes using microRNAs (miRNAs) and to investigate their impact on the oncogenic and immunogenic profile of BC cells. BC female patients (n = 25) were recruited. In-silico analysis was used to identify miRNAs targeting CBS, CSE, and 3MST. MDA-MB-231 cells were cultured and transfected using oligonucleotides. Total RNA was extracted using Biazol, reverse transcribed and quantified using qRT-PCR. H2S levels were measured using AzMc assay. BC hallmarks were assessed using trans-well migration, wound healing, MTT, and colony forming assays. miR-193a and miR-548c were validated by eight different bioinformatics software to simultaneously target CBS, CSE and 3MST. MiR-193a and miR-548c were significantly downregulated in BC tissues compared to their non-cancerous counterparts. Ectopic expression of miR-193a and miR-548c in MDA-MB-231 TNBC cells resulted in a marked repression of CBS, CSE, and 3MST transcript and protein levels, a significant decrease in H2S levels, reduction in cellular viability, inhibition of migration and colony forming ability, repression of immune-suppressor proteins GAL3 GAL9, and CD155 and upregulation of the immunostimulatory MICA and MICB proteins. This study sheds the light onto miR-193a and miR-548c as potential pan-repressors of the H2S synthesizing enzymes. and identifies them as novel tumor suppressor and immunomodulatory miRNAs in TNBC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call