Abstract
ABSTRACT Transcription is a crucial stage in gene expression. An integrated study of 34 RNA polymerase subunits (RNAPS) in the six most frequent cancer types identified several genetic and epigenetic modification. We discovered nine mutant RNAPS with a mutation frequency of more than 1% in at least one tumor type. POLR2K and POLR2H were found to be amplified and overexpressed, whereas POLR3D was deleted and downregulated. Multiple RNAPS were also observed to be regulated by variations in promoter methylation. 5-Aza-2-deoxycytidine mediated re-expression in cell lines verified methylation-driven inhibition of POLR2F and POLR2L expression in BRCA and NSCLC, respectively. Next, we showed that CD3EAP, a Pol I subunit, was overexpressed in all cancer types and was associated with worst survival in breast, liver, lung, and prostate cancers. The knockdown studies showed that CD3EAP is required for cell proliferation and induces autophagy but not apoptosis. Furthermore, autophagy inhibition rescued the cell proliferation in CD3EAP knockdown cells. CD3EAP expression correlated with S and G2 phase cell cycle regulators, and CD3EAP knockdown inhibited the expression of S and G2 CDK/cyclins. We also identified POLR2D, an RNA pol II subunit, as a commonly overexpressed and prognostic gene in multiple cancers. POLR2D knockdown also decreased cell proliferation. POLR2D is related to the transcription of just a subset of RNA POL II transcribe genes, indicating a distinct role. Taken together, we have shown the genetic and epigenetic regulation of RNAPS genes in most common tumors. We have also demonstrated the cancer-specific function of CD3EAP and POLR2D genes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.