Abstract

PurposeProtein arginine methyltransferases (PRMTs) regulate several signal transduction pathways involved in cancer progression. Recently, it has been reported that PRMTs are closely related to anti-tumor immunity; however, the underlying mechanisms have yet to be studied in lung adenocarcinoma (LUAD). In this study, we focused on PRMT1 and PRMT5, key members of the PRMT family. And their signatures in lung carcinoma associated with prognosis, immune profile, and therapeutic response including immunotherapy and radiotherapy were explored. MethodsTo understand the function of PRMT1 and PRMT5 in tumor cells, we examined the association between the expression of PRMT1 and PRMT5 and the clinical, genomic, and immune characteristics, as well as the sensitivity to immunotherapy and radiotherapy. Specifically, our investigation focused on the role of PRMT1 and PRMT5 in tumor progression, with particular emphasis on interferon-stimulated genes (ISGs) and the pathway of type I interferon. Furthermore, the influence of proliferation, migration, and invasion ability was investigated based on the expression of PRMT1 and PRMT5 in human lung adenocarcinoma cell lines. ResultsThrough the examination of receiver operating characteristic (ROC) and survival studies, PRMT1 and PRMT5 were identified as potential biomarkers for the diagnosis and prognosis. Additionally, heightened expression of PRMT1 or PRMT5 was associated with immunosuppressive microenvironments. Furthermore, a positive correlation was observed between the presence of PRMT1 or PRMT5 with microsatellite instability, tumor mutational burden, and neoantigens in the majority of cancers. Moreover, the predictive potential of PRMT1 or PRMT5 in individuals undergoing immunotherapy has been acknowledged. Our study ultimately revealed that the inhibition of PRMT1 and PRMT5 in lung adenocarcinoma resulted in the activation of the cGAS-STING pathway, especially after radiation. Favorable prognosis was observed in lung adenocarcinoma patients receiving radiotherapy with reduced PRMT1 or PRMT5 expression. It was also found that the expression of PRMT1 and PRMT5 influenced proliferation, migration, and invasion of human lung adenocarcinoma cell lines. ConclusionThe findings indicate that PRMT1 and PRMT5 exhibit potential as immune-related biomarkers for the diagnosis and prognosis of cancer. Furthermore, these biomarkers could be therapeutically targeted to augment the efficacy of immunotherapy and radiotherapy in lung adenocarcinoma.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call