Abstract

AbstractUnderstanding the drivers of iceberg calving from Antarctic ice shelves is important for future sea level rise projections. Ocean waves promote calving by imposing stresses and strains on the shelves. Previous modeling studies of ice shelf responses to ocean waves have focused on highly idealized geometries with uniform ice thickness and a flat seabed. This study leverages on a recently developed mathematical model that incorporates spatially varying geometries, combined with measured ice shelf thickness and seabed profiles, to conduct a statistical assessment of how 15 Antarctic ice shelves respond to ocean waves over a broad range of relevant wave periods, from swell to infragravity waves to very long period waves. The results show the most extreme responses at a given wave period are generated by features in the ice shelves and/or seabed geometries, depending on the wave regime. Relationships are determined between the median ice shelf response and the median shelf front thickness or the median water cavity depth. The findings provide further evidence of the role of ocean waves in large‐scale calving events for certain ice shelves (particularly the Wilkins) and indicate a possible role of ocean waves in calving events for other shelves (Larsen C and Conger). Further, the relationships determined provide a method to assess the potential for increased calving as ice shelves evolve with climate change, and, hence, contribute to assessments of future sea level rise.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.