Abstract

A proprietary method is used to process measurement data from a high-energy particle (protons, electrons, and positrons with Е ≥ 50 GeV) spectrometer in a near-Earth orbit. The data from three detector systems are used: a tracker in a constant magnetic field (TRK), a calorimeter (CAL), and a neutron detector (ND). A relatively simple and efficient way of isolating electrons and positrons from the total charged particle flux entering the PAMELA spectrometer is proposed. A technique for determining the energy of isolated primary particles and retrieving their energy spectra is described. The composite electron and positron spectrum (below, the total electron and positron flux is referred to simply as the electron flux) for energies up to 1.5 TeV is presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.