Abstract

We present a new pseudospectral approach for incorporating many-body, nonlocal exact exchange interactions to understand the formation of electron gases in core-shell nanowires. Our approach is efficiently implemented in the open-source software package PAMELA (Pseudospectral Analysis Method with Exchange & Local Approximations) that can calculate electronic energies, densities, wavefunctions, and band-bending diagrams within a self-consistent Schrödinger-Poisson formalism. The implementation of both local and nonlocal electronic effects using pseudospectral methods is key to PAMELA's efficiency, resulting in significantly reduced computational effort compared to finite-element methods. In contrast to the new nonlocal exchange formalism implemented in this work, we find that the simple, conventional Schrödinger-Poisson approaches commonly used in the literature (1) considerably overestimate the number of occupied electron levels, (2) overdelocalize electrons in nanowires, and (3) significantly underestimate the relative energy separation between electronic subbands. In addition, we perform several calculations in the high-doping regime that show a critical tunneling depth exists in these nanosystems where tunneling from the core-shell interface to the nanowire edge becomes the dominant mechanism of electron gas formation. Finally, in order to present a general-purpose set of tools that both experimentalists and theorists can easily use to predict electron gas formation in core-shell nanowires, we document and provide our efficient and user-friendly PAMELA source code that is freely available at http://alum.mit.edu/www/usagi.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call