Abstract

Selective capture of mono-, multi- or global phosphopeptides is significant for the in-depth study of protein kinase or phosphatase signal transduction pathways. However, this study is largely restricted because of the lack of versatile affinity materials with high enrichment capacity and tunable selectivity. Here, we prepared a smart nanoprobe for the selective enrichment of mono-, multi- or global phosphopeptides by introducing polyamidoamine dendrimer (PAMAM)-grafted poly(methacrylic acid) (PMAA) brushes to modified magnetic composite nanospheres (denoted as Fe3O4@PDA@PMAA@PAMAM). The practicability of the prepared nanospheres for phosphopeptide enrichment was investigated by using model proteins (α-casein and β-casein) and complex biological samples (nonfat milk and human saliva). The extremely abundant amine groups of PAMAM-PMAA brushes and superparamagnetism of the Fe3O4 core endowed the composite nanospheres with high detection sensitivity (1 fmol μL-1), excellent selectivity (1 : 500 molar ratios of β-casein/BSA) and high recyclability (five cycles) towards phosphopeptides. Additionally, based on the tunable bonding ability of the nanospheres towards phosphopeptides with different phosphorylation sites, selective enrichment of mono-, multi- or global phosphopeptides was realized by modulating buffer polarity and acidity, making them ideal new nanoprobes for comprehensive phosphoproteome analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.