Abstract

This paper presents a reliable and robust palmprint verification approach using palmprint feature point number (FPN). The feature verified by support vector machine (SVM). It has the advantages of capturing palm images in peg-less scenarios and by a low cost and low-resolution (100dpi) digital scanner. The low-resolution images lead a less database size. There are 4800 palmprint images were collected from 160 persons to verify the validity of the proposed approach and the results are satisfactory with 98.30% classification correct rate (CCR). Experimental results demonstrate that the proposed approach is feasible and effective in palmprint verification. Our findings will help to extend palmprint verification technologies to security access control systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.