Abstract

This paper presents a novel Daubechies-based kernel Principal Component Analysis (PCA) method by integrating the Daubechies wavelet representation of palm images and the kernel PCA method for palmprint recognition. The palmprint is first transformed into the wavelet domain to decompose palm images and the lowest resolution subband coefficients are chosen for palm representation. The kernel PCA method is then applied to extract non-linear features from the subband coefficients. Finally, weighted Euclidean linear distance based NN classifier and support vector machine (SVM) are comparatively performed for similarity measurement. Experimental results on PolyU Palmprint Databases demonstrate that the proposed approach achieves highly competitive performance with respect to the published palmprint recognition approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.