Abstract

BackgroundEnhanced supraspinal glutamate levels following nerve injury are associated with pathophysiological mechanisms responsible for neuropathic pain. Chronic pain can interfere with specific brain areas involved in glutamate-dependent neuropsychological processes, such as cognition, memory, and decision-making. The medial prefrontal cortex (mPFC) is thought to play a critical role in pain-related depression and anxiety, which are frequent co-morbidities of chronic pain. Using an animal model of spared nerve injury (SNI) of the sciatic nerve, we assess bio-molecular modifications in glutamatergic synapses in the mPFC that underlie neuropathic pain-induced plastic changes at 30 days post-surgery. Moreover, we examine the effects of palmitoylethanolamide (PEA) administration on pain-related behaviours, as well as the cortical biochemical and morphological changes that occur in SNI animals.ResultsAt 1 month, SNI was associated with mechanical and thermal hypersensitivity, as well as depression-like behaviour, cognitive impairments, and obsessive-compulsive activities. Moreover, we observed an overall glutamate synapse modification in the mPFC, characterized by changes in synaptic density proteins and amino acid levels. Finally, with regard to the resolution of pain and depressive-like syndrome in SNI mice, PEA restored the glutamatergic synapse proteins and changes in amino acid release.ConclusionsGiven the potential role of the mPFC in pain mechanisms, our findings may provide novel insights into neuropathic pain forebrain processes and indicate PEA as a new pharmacological tool to treat neuropathic pain and the related negative affective states.Graphical Palmitoylethanolamide: a new pharmacological tool to treat neuropathic pain and the related negative affective states.Electronic supplementary materialThe online version of this article (doi:10.1186/s13041-015-0139-5) contains supplementary material, which is available to authorized users.

Highlights

  • Enhanced supraspinal glutamate levels following nerve injury are associated with pathophysiological mechanisms responsible for neuropathic pain

  • NMDA-induced changes in dendritic plasticity has been shown in the prelimbic and infralimbic (PL-IL) cortex of neuropathic rats [15], whereas cortex deactivation has been shown in rodents with persistent inflammatory pain [16]

  • We found that repeated PEA treatment (10 mg/kg i.p., once per day) significantly increased both the thermal and mechanical thresholds in spared nerve injury (SNI) mice (7.8 s ± 0.5 and 7.4 g ± 0.4, respectively) 30 days after injury

Read more

Summary

Introduction

Enhanced supraspinal glutamate levels following nerve injury are associated with pathophysiological mechanisms responsible for neuropathic pain. The medial prefrontal cortex (mPFC) is thought to play a critical role in pain-related depression and anxiety, which are frequent co-morbidities of chronic pain. Using an animal model of spared nerve injury (SNI) of the sciatic nerve, we assess bio-molecular modifications in glutamatergic synapses in the mPFC that underlie neuropathic pain-induced plastic changes at 30 days post-surgery. The medial prefrontal cortex (mPFC) is thought to play a key role in pain-related depression and anxiety, which are frequent co-morbidities of chronic pain [12, 13]. PL-IL cortex corresponds to the dorsal-lateral prefrontal cortex in primates It plays a crucial role in pain processing and pathological pain deeply affects its synaptic organization [7, 8, 14]. NMDA-induced changes in dendritic plasticity has been shown in the PL-IL cortex of neuropathic rats [15], whereas cortex deactivation has been shown in rodents with persistent inflammatory pain [16]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call