Abstract

Palmitoylethanolamide (PEA) has been shown to act in synergy with anandamide (arachidonoylethanolamide; AEA), an endogenous agonist of cannabinoid receptor type 1 (CB1). This synergistic effect was reduced by the CB2 cannabinoid receptor antagonist SR144528, although PEA does not activate either CB1 or CB2 receptors. Here we show that PEA potently enhances the anti-proliferative effects of AEA on human breast cancer cells (HBCCs), in part by inhibiting the expression of fatty acid amide hydrolase (FAAH), the major enzyme catalysing AEA degradation. PEA (1–10μM) enhanced in a dose-related manner the inhibitory effect of AEA on both basal and nerve growth factor (NGF)-induced HBCC proliferation, without inducing any cytostatic effect by itself. PEA (5μM) decreased the IC50 values for AEA inhibitory effects by 3–6-fold. This effect was not blocked by the CB2 receptor antagonist SR144528, and was not mimicked by a selective agonist of CB2 receptors. PEA enhanced AEA-evoked inhibition of the expression of NGF Trk receptors, which underlies the anti-proliferative effect of the endocannabinoid on NGF-stimulated MCF-7 cells. The effect of PEA was due in part to inhibition of AEA degradation, since treatment of MCF-7 cells with 5μM PEA caused a ∼ 30–40% down-regulation of FAAH expression and activity. However, PEA also enhanced the cytostatic effect of the cannabinoid receptor agonist HU-210, although less potently than with AEA. PEA did not modify the affinity of ligands for CB1 or CB2 receptors, and neither did it alter the CB1/CB2-mediated inhibitory effect of AEA on adenylate cyclase type V, nor the expression of CB1 and CB2 receptors in MCF-7 cells. We suggest that long-term PEA treatment of cells may positively affect the pharmacological activity of AEA, in part by inhibiting FAAH expression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.