Abstract

Dopamine D2 receptor (D2R) and D3 receptor (D3R) possess highly conserved amino acid sequences but this study showed that D3R was more extensively palmitoylated than D2R. Based on this finding, the molecular basis of this selective palmitoylation of D3R was determined and the roles of palmitoylation in the regulation of D3R functions were investigated. D3R was palmitoylated on the cysteine residue on its carboxyl terminus tail, the last amino acid residue of D3R, and an exchange of the carboxyl terminus tail between D2R and D3R (D2R-D3C and D3R-D2C) resulted in the switching of the palmitoylation phenotype. When the consensus site for palmitoylation was mutated or the palmitoylation of D3R was inhibited by treatment with 2-bromopalmitate (2BP), a palmitoylation blocker, cell-surface expression, PKC-mediated endocytosis, agonist affinity, and agonist-induced tolerance of D3R were all inhibited. However, these changes were not observed when D3R palmitoylation was inhibited by replacing its carboxyl tail with that of D2R (D3R-D2C) or when the palmitoylation of D2R-D3C was inhibited by treatment with 2BP. Overall, this study shows that D3R is palmitoylated more extensively than D2R even though the carboxyl terminus tails of D2R and D3R are highly homologous, and thus provides a new clue regarding the consensus sequence for palmitoylation. This study also shows that palmitoylation controls various functionalities of D3R only when the receptor is in the intact D3R configuration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.