Abstract

Activity-responsive changes in the actin cytoskeleton are required for the biogenesis, motility, and remodeling of dendritic spines. These changes are governed by proteins that regulate the polymerization, depolymerization, bundling, and branching of actin filaments. Thus, processes that have been extensively characterized in the context of non-neuronal cell shape change and migration are also critical for learning and memory. In this review article, we highlight actin regulatory proteins that associate, at least transiently, with the dendritic plasma membrane. All of these proteins have been shown, either in directed studies or in high—throughput screens, to undergo palmitoylation, a potentially reversible, and stimulus-dependent cysteine modification. Palmitoylation increases the affinity of peripheral proteins for the membrane bilayer and contributes to their subcellular localization and recruitment to cholesterol-rich membrane microdomains.

Highlights

  • Protein palmitoylation is a key regulatory mechanism in synaptic plasticity

  • The focus of this review has been on palmitoylated proteins directly implicated in remodeling of the actin cytoskeleton during synaptic plasticity, whether or not the functional significance of their palmitoylation has been conclusively established

  • Several other palmitoylated proteins that function in other capacities in the dendritic spine have a critical, albeit less direct, impact on structural synaptic plasticity

Read more

Summary

Palmitoylated Proteins in Dendritic Spine Remodeling

Activity-responsive changes in the actin cytoskeleton are required for the biogenesis, motility, and remodeling of dendritic spines. These changes are governed by proteins that regulate the polymerization, depolymerization, bundling, and branching of actin filaments. We highlight actin regulatory proteins that associate, at least transiently, with the dendritic plasma membrane. All of these proteins have been shown, either in directed studies or in high—throughput screens, to undergo palmitoylation, a potentially reversible, and stimulus-dependent cysteine modification. Palmitoylation increases the affinity of peripheral proteins for the membrane bilayer and contributes to their subcellular localization and recruitment to cholesterol-rich membrane microdomains

INTRODUCTION
Spine Initiation
Spine Enlargement and Maturation
Spine Shrinkage
Arc as a Regulator of the Actin Cytoskeleton in Dendrites
Palmitoylation of Arc
Findings
CONCLUSION AND PERSPECTIVE
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call