Abstract
To investigate the key molecular mechanisms of palmatine for the treatment of neuroinflammation through modulation of a pathway using molecular docking, molecular dynamics (MD) simulation combined with network pharmacology, and animal experiments. Five alkaloid components were obtained from the traditional Chinese medicine Huangteng through literature mining. Molecular docking and MD simulation with acetylcholinesterase were used to screen palmatine. At the animal level, mice were injected with LPS intracerebrally to cause a neuroinflammatory model, and the Morris water maze experiment was performed to examine the learning memory of mice. Anxiety levels were tested using the autonomous activity behavior experiment with the open field and elevated behavior experiments. HE staining and Niss staining were performed on brain tissue sections to observe morphological lesions and apoptosis; serum was examined for inflammatory factors TNF-α, IL-6, and IL-1β; Western blot was performed to detect the protein expression. The expression of PI3K/AKT/NFkB signaling pathway-related proteins was examined by Western blot. The results of network pharmacology showed that the screening of palmatine activation containing the PI3K/Akt/NFkB signaling pathway exerts antineuroinflammatory effects. Results from behavioral experiments showed that Pal enhanced learning memory in model mice, improved anxiety behavior, and significantly improved brain damage caused by neuroinflammation. The results of HE staining and Niss staining of brain tissue sections showed that palmatine could alleviate morphological lesions and nucleus damage in brain tissue. Palmatine improved the levels of serum inflammatory factors TNF-α, IL-6, and IL-1β. SOD, MDA, CAT, ACH, and ACHE in the hippocampus were improved. Western blot results showed that palmatine administration ameliorated LPS-induced neuroinflammation through the PI3K/Akt/NFkB pathway.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.