Abstract

We evaluated the effects of vitamin E and beta-carotene on apolipoprotein (apo)E +/- female mice, which develop atherosclerosis only when fed diets high in triglyceride and cholesterol. Mice were fed a nonpurified control diet (5.3 g/100 g triglyceride, 0.2 g/100 g cholesterol), an atherogenic diet alone (15.8 g/100 g triglyceride, 1.25 g/100 g cholesterol, 0.5 g/100 g Na cholate) or the atherogenic diet supplemented with either 0.5 g/100 g (+)-alpha-tocopherol (mixed isomers); 0.5 g/100 g palm tocopherols (palm-E; 33% alpha-tocopherol, 16.1% alpha-tocotrienol, 2.3% beta-tocotrienol, 32.2% gamma-tocotrienol, 16.1% delta-tocotrienol); 1.5 g/100 g palm-E; or 0.01 g/100 g palm-carotenoids (58% beta-carotene, 33% alpha-carotene, 9% other carotenoids). Compared with mice fed the control diet, plasma cholesterol was fourfold greater in mice fed the atherogenic diet. Mice fed the 1.5 g/100 g palm-E supplement had 60% lower plasma cholesterol than groups fed the other atherogenic diets. Mice fed the atherogenic diet had markedly higher VLDL, intermediate density lipoprotein (IDL) and LDL cholesterol and markedly lower HDL cholesterol than the controls. Lipoprotein patterns in mice supplemented with alpha-tocopherol or palm carotenoids were similar to those of the mice fed the atherogenic diet alone, but the pattern in mice supplemented with 1. 5 g/100 g palm-E was similar to that of mice fed the control diet. In mice fed the atherogenic diet, the hepatic cholesterol plus cholesterol ester concentration was 4.4-fold greater than in mice fed the control diet. Supplementing with 1.5 g/100 g palm-E lowered hepatic cholesterol plus cholesterol ester concentration 66% compared with the atherogenic diet alone. Mice fed the atherogenic diet had large atherosclerotic lesions at the level of the aortic valve. With supplements of 0.5 g/100 g palm-E or 1.5 g/100 g palm-E, the size of the lesions was 92 or 98% smaller, respectively. The 0.5 g/100 g alpha-tocopherol and palm carotenoid supplements had no effect. Supplements did not alter mRNA abundance for apolipoproteins A1, E, and C3. The beneficial effect of tocotrienols on atherogenesis, the plasma lipoprotein profile and accumulation of hepatic cholesterol esters cannot be attributed to their antioxidant properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.