Abstract

This study investigated the elemental content, proximate analysis, morphological nature, calorific value and ultimate analysis of the Elaeis guineensis palm kernel shell (PKS), to determine its suitability for use in syngas generation. The elemental content was studied using the X-ray fluorescence spectroscopy (XRF) analysis, and the presence of elements like Ca, Fe, Si, K and P with their oxides was detected. Field emission scanning electron microscopy (FESEM) with energy dispersive electron microscopy (EDX) was applied to detect the structural properties of PKS, with details of light surface elements. The PKS has a porous structure for a free flow of air and volatile matter, and carbon and oxygen were seen as the major surface elements, 64% and 29.4%, respectively. It had a high calorific value of 18.84 MJ/kg. The ultimate analysis revealed suitable contents of carbon 48.4%, oxygen 45% and hydrogen 5.85%. The proximate analysis showed the presence of high volatile matter of 73.4%, low moisture of 6.0% and ash content of 5.8%. Overall, PKS has a good prospect to be used as a fuel for syngas production via gasification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.