Abstract
The aim of the study was to analyze the dose to be administered with two-dimensional involved-field palliative radiotherapy in advanced pancreatic carcinoma with respect to current dose-volume constraints (QUANTEC). The following standard regimens were evaluated: 30 Gy at 3 Gy/fraction (regimen A), 36 Gy at 2.4 Gy/fraction (regimen B), 45 Gy at 1.8 Gy/fraction (regimen C), and 50 Gy at 2 Gy /fraction (regimen D). The following constraints were considered: spinal cord Dmax <50 Gy, duodenum Dmax <55 Gy, liver Dmean <30 Gy, kidneys Dmean <15 Gy. For dose/fraction different from 1.8-2 Gy, the correction of constraints using a value of alpha/beta = 3 for late effects was considered. The calculation of dose/volume constraints was repeated for three different radiation beams: cobalt unit, 6 MV photons, and 15 MV photons. Standard field sizes were used and adapted according to the different beam types, using the parameters of our previous study. Respect of dose-volume constraints was assessed for each type of beam and treatment (dose per fractionation) in all patients. Treatments were considered acceptable in case of: 1) respect of the constraints for spinal cord and duodenum in all patients; 2) respect in >10/15 patients of constraints for kidneys and liver. Therefore, minor violations (<10%) of the constraints for these organs were accepted (in less than 5/15 patients), in consideration of the palliative aim of treatment. In regimen A (30 Gy, 3 Gy/fraction), evaluated constraints were respected in all patients, regardless of the type of energy. In regimen B (36 Gy, 2.4 Gy/fraction), constraints were met in all patients undergoing irradiation with 6 and 15 MV photons. However, using the cobalt unit, kidney constraint was respected only in 5 of 15 patients. In regimens C and D (45 Gy, 1.8 Gy/fraction and 50 Gy, 2 Gy/fraction, respectively), the constraint for the kidney was respected only in 2-5 patients, depending on the energy used. Furthermore, using 50 Gy, the spinal cord constraint was not respected in 2-3 patients, depending on the beam used. Therefore, only the following treatments were considered acceptable: 1) 30 Gy, 3 Gy/fraction, regardless of the energy used; 2) 36 Gy, 2.4 Gy/fraction, only for treatments performed with linear accelerator (6-15 MV). The clinical benefits of radiotherapy in pancreatic tumors should not be withheld from patients treated in centers only with two-dimensional technology. Prospective trials, particularly in developing countries, would be useful to evaluate the efficacy in this setting of involved-field two-dimensional treatments using the dose and fractionation defined in this analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.