Abstract

In Japan, the aging and depopulation of its workforce are issues. Therefore, the development of autonomous agricultural robots is required for saving manpower and labor. In this paper, we described an autonomous pallet handling system for forklift, which can automatically unload and convey pallets for harvesting vegetables outdoors. Because of inserting the forks into a narrow pallet hole, accurate pallet posture estimation and accurate control of a forklift and the forks are required. The system can detect the pallet by deep learning based object detection from an image. Based on the results of object detection and measurement by horizontal 3D light detection and ranging (LiDAR), the system accurately estimates a distance as well as horizontal and vertical deviation between the forklift and the pallet in the outside field. The forklift is controlled by sliding mode control (SMC) which is robust to disturbances. Furthermore, the vertical LiDAR scans the pallet for precisely adjusting the height of the fork. The system requires the environment with no or little preparation for the automation process. We confirmed the effectiveness of the system through an experiment. The experiment is assumed that the forklift unloads the pallet from the vehicle as the real task of agriculture. The experimental results indicated the suitability of the system in real agricultural environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.