Abstract

Reactions between acyclic (E)-allylic acetates and arylboronic acids in the presence of a palladium catalyst prepared from Pd(OAc)(2), phenanthroline (or bipyridine), and AgSbF(6) (1:1.2:1) proceeded with excellent gamma-selectivity to afford allyl-aryl coupling products with E-configuration. The reactions of alpha-chiral allylic acetates took place with excellent alpha-to-gamma chirality transfer with syn stereochemistry to give allylated arenes with a stereogenic center at the benzylic position. The reaction tolerated a broad range of functional groups in both the allylic acetates and the arylboronic acids. Furthermore, gamma-arylation of cinnamyl alcohol derivatives afforded gem-diarylalkane derivatives containing an unconjugated alkenic substituent. The synthetic utility of this method was demonstrated by its utilization in an efficient synthesis of (+)-sertraline, an antidepressant agent. The observed gamma-regioselectivity and E-1,3-syn stereochemistry were rationalized based on a Pd(II) mechanism involving transmetalation between a cationic mono(acyloxo)palladium(II) complex and arylboronic acid, and directed carbopalladation followed by syn-beta-acyloxy elimination. The results of stoichiometric reactions of palladium complexes related to possible intermediates were fully consistent with the proposed mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call