Abstract

Catalyst-controlled regiodivergent catalysis is a vital chemical tool that allows efficient access to large collections of structurally diverse molecules from a common precursor but remains a challenge. We report a catalyst-controlled, tunable, and predictable regiodivergency in transforming the internal aliphatic propargyl esters into diverse libraries of highly substituted 1,3-dienyl and allyl products by Pd-catalysis. Depending on the ligand employed, the palladium catalyst can involve two typical approaches: electrophilic palladium catalysis and a sequential oxidative addition-reductive elimination pathway. This regiodivergent protocol endows facile access to four regioisomers with high regio- and stereoselectivity from the common propargyl esters. In terms of synthetic utility, a notable feature of this protocol is amenable to structural diversification of bioactive relevant molecules, enabling rapid assembly of many useful structural analogs of pharmaceutical candidates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.