Abstract

In this study, a novel platelet-like nanocatalyst, Pd/g-C3N4 with easily approachable active sites, was developed. The mesoporous graphitic carbon nitride (g-C3N4) is a layered structure connected by planar amino groups, which can work as stabilizer and active support for noble metal nanoparticles. The palladium nanoparticles with an average particle size of 3.25 nm were evenly dispersed on the surface of g-C3N4 without aggregation. Detailed charaterizations reveal that there is no covalent-bond interaction between g-C3N4 and Pd NPs. The Pd/g-C3N4 catalyst showed excellent catalytic activity in the reduction of nitroarenes by NaBH4, and Suzuki coupling reaction of aryl halides with arylboronic acids under mild conditions. The reduction of 4-nitrophenol has a pseudo-first-order rate constant of 7.29 × 10−3 s−1, and an activity parameter of 1.37 s−1 mM−1, which is higher than those reported in the literature. Furthermore, the Suzuki coupling reactions processed smoothly with 97.0 % isolate yield in less than 30 min in water with PEG600 as the additive. The catalyst could be recycled for five times without significant loss of catalytic activity, which confirmed the good stability of the catalyst.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.