Abstract

A Schottky contact-based hydrogen (H2) gas sensor operable at room temperature was constructed by assembling single-walled carbon nanotubes (SWNTs) on a Si/SiO2 substrate bridged by Pd microelectrodes in a chemiresistive/chemical field effect transistor (chemFET) configuration. The Schottky barrier (SB) is formed by exposing the Pd-SWNT interfacial contacts to H2 gas, the analyte it was designed to detect. Because a Schottky barrier height (SBH) acts as an exponential bottleneck to current flow, the electrical response of the sensor can be particularly sensitive to small changes in SBH, yielding an enhanced response to H2 gas. The sensing mechanism was analyzed by I-V and FET properties before and during H2 exposure. I-Vsd characteristics clearly displayed an equivalent back-to-back Schottky diode configuration and demonstrated the formation of a SB during H2 exposure. The I-Vg characteristics revealed a decrease in the carrier mobility without a change in carrier concentration; thus, it corroborates that modulation of a SB via H2 adsorption at the Pd-SWNT interface is the main sensing mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.