Abstract

Traditional methods for analyzing organophosphorus pesticide chlorpyrifos, usually require the tedious sample pretreatment and sophisticated bio-interfaces, leading to the difficulty for real-time analysis. Herein, we use palladium single-atom (PdSA)/TiO2 as a photocatalytic sensing platform to directly detect chlorpyrifos with high sensitivity and selectivity. PdSA/TiO2 , prepared by an in situ photocatalytic reduction of PdCl42- on the TiO2 , shows much higher photocatalytic activity (10 mol g-1 h-1 ) for hydrogen evolution reaction than Pd nanoparticles (1.95 mol g-1 h-1 ), and excellent stability. In the presence of chlorpyrifos, the photocatalytic activity of PdSA/TiO2 decreases. Through this inhibition effect the platform can realize a detection limit for chlorpyrifos of 0.01 ng mL-1 , much lower than the maximum residue limit (10 ppb) permitted by the U.S. Environmental Protection Agency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call