Abstract

An assay to detect carbon monoxide (CO), one of the gaseous signaling molecules, has been prepared using a new palladium complex probe. The ethylenediamine group linked to the naphthalimide fluorophore coordinates to Pd(II) which intramolecularly quenches the emission. Upon treatment with CO, the absorbance of the turn-on fluorescent sensor changes due to the formation of a complex between Pd(II) and CO at room temperature in a phosphate buffer. As the concentration of CO increases, the probe peak emission intensity at 527 nm gradually increases. Other analyte controls, such as K+, Mg2+, Al3+, Zn2+, Cr3+, Hg2+, Fe3+, alanine, glycine, leucine, lysine, serine, threonine, tyrosine, F-, Cl-, Br-, NO, NO2-, NO3-, HCO3-, CH3COO-, H2O2, •OH, and tBuOO•, exhibit no significant effect on emission intensity. The response time of the probe to CO was quite fast because of the relatively weak coordination of Pd(II) to the pendent ethylenediamine group. The Pd probe is capable of detecting CO in aqueous buffer as well as in living cells with high selectivity and stability, providing a potential real-time indicator for studying CO-involved reactions in biological systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.