Abstract

To improve the hydrogen detection performance, a flexible palladium-based hydrogen sensor was designed and fabricated on normal photocopy paper. The paper substrate offers advantages such as light weight, low cost, flexibility and unique surface texture. A conventional vacuum evaporation technique was utilized for 60 nm palladium deposition on the paper and glass substrates. The unique surface texture of the paper effectively increased the surface area to volume ratio for the sensing element, which achieved a higher gas response with faster speed than the glass-based sensor. In addition, we investigated the temperature impacts on sensing performance of the paper-based hydrogen sensor at room temperature and 50 °C. Furthermore, the flexibility test results of the paper-based hydrogen sensor showed that the sensing performances were impervious to mechanical bending of 5.7°.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call