Abstract
Nanostructures and nanoparticles of palladium assembled on highly ordered pyrolytic graphite (HOPG) by the adsorption of palladium molecular precursors (MPs), in dichloromethane solutions, have been prepared. Self-assemblies of palladium nanostructures on HOPG were characterized by scanning electron microscopy (SEM), Auger electron spectroscopy (AES), transmission electron microscopy (TEM), and atomic force microscopy (AFM) techniques. In this work, palladium rings had a wide variety of sizes in the nanometer range, and the ring/tube structures were preserved after a reductive process in which palladium metallic nanoparticles were formed. Noncircular structures were observed at HOPG defects and atomic step sites, as well. It is proposed that the observed ring formation of the palladium molecular precursors on HOPG substrates is related to the functional groups in the MPs, van der Waals interactions between particles and between particle-substrate, as well as the wetting properties of the solvent. In the present work, we illustrate several examples of the formation and characterization of palladium complex tubes and the resulting palladium rings, via the reduction process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.