Abstract
Nanotechnology is focused on the development and application of novel nanomaterials with particular physicochemical properties. Palladium nanoparticles (PdNPs) have been used as antimicrobials, antifungals, and photochemicals and for catalytic activity in dye reduction. In the present investigation, we developed and characterized PdNPs as a carrier of quercetin and initiated a study of its effects in colorectal cancer cells. PdNPs were first functionalized with polyvinylpyrrolidone (PVP) and then coupled to quercetin (PdNPs-PVP-Q). Our results showed that quercetin was efficiently incorporated to PdNPs-PVP, as demonstrated using UV/Vis and FT-IR spectroscopy. Using transmission electron microscopy, we demonstrated a reduction in size from 3–14.47 nm of PdNPs alone to 1.8–7.4 nm of PdNPs-PVP and to 2.12–3.14 of PdNPs-PVP-Q, indicating an increase in superficial area in functionalized PdNPs-Q. Moreover, hydrodynamic size studies using dynamic light scattering showed a reduction in size from 2120.33 nm ± 112.53 with PdNPs alone to 129.96 nm ± 6.23 for PdNPs-PVP-Q, suggesting a major reactivity when quercetin is coupled to nanoparticles. X-ray diffraction assays show that the addition of PVP or quercetin to PdNPs does not influence the crystallinity state. Catalytic activity assays of PdNPs-PVP-Q evidenced the chemical reduction of 4-nitrophenol, methyl orange, and methyl blue, thus confirming an electron acceptor capacity of nanoparticles. Finally, biological activity studies using MTT assays showed a significant inhibition (p < 0.05) of cell proliferation of HCT-15 colorectal cancer cells exposed to PdNPs-PVP-Q in comparison to untreated cells. Moreover, treatment with PdNPs-PVP-Q resulted in the apoptosis activation of HCT-15 cells. In conclusion, here we show for the first time the development of PdNPs-PVP-Q and evidence its biological activities through the inhibition of cell proliferation and apoptosis activation in colorectal cancer cells in vitro.
Highlights
Nanotechnology has become a very wide and diverse research area with rapid development and application
We added PVP to the Palladium nanoparticles (PdNPs) synthesis as a surfactant to modify their surface, and this worked as a link between quercetin and PdNPs
PdNP modification by PVP and the further addition of quercetin were evaluated by UV/Vis spectrometry (Figure 1)
Summary
Nanotechnology has become a very wide and diverse research area with rapid development and application. An objective of nanotechnology study is nanoparticles (NPs) with different compositions. Metallic nanoparticles have been of great interest due to their specific physicochemical characteristics. These characteristics include a small size (between 1–100 nm), a large superficial area, high reactivity, and the extraordinary quantum effect [1,2]. Due to their physical-chemical characteristics, NPs have incredible pharmacokinetic properties and can be used as carriers of drugs or molecules for a specific purpose (antibiotics, antibodies, or organic molecules) [3,4]. Nanoparticle stability remains challenging, due to the electrostatic attraction in naked NPs, which tend to agglomerate
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.