Abstract

A facile spontaneous redox method is developed to obtain uniform palladium nanoparticles (PdNPs) distributed on surfactant-functionalized multi-walled carbon nanotubes (MWCNTs) at room temperature. In this synthesis, hexadecyltrimethylammonium bromide (CTAB) was self-assembled onto MWCNTs to provide adsorption sites for PdCl42− ions. Interestingly, PdCl42− was spontaneously reduced though a galvanic cell effect between PdCl42− and MWCNTs. The as-prepared Pd catalyst showed excellent catalytic activity toward oxidation of ethanol and glucose in an alkaline medium. Inspired by this, a glucose enzyme-free biosensor was developed with a wide linear range covering from 1mM to 20mM and a high sensitivity of 11μAmM−1cm−2 (to 1–10mM) and 6.3μAmM−1cm−2 (to 11–20mM). These results indicate that the as-synthesized Pd catalyst could be a great potential material for improving performance of direct ethanol fuel cells and glucose sensors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.