Abstract

AbstractThe development of oxidation catalysts that are resistant to sulfur poisoning is crucial for extending the lifespan of catalysts in real‐working conditions. Herein, we describe the design and synthesis of oxide‐metal interaction (OMI) catalyst under oxidative atmospheres. By using organic coated TiO2, an oxide/metal inverse catalyst with non‐classical oxygen‐saturated TiO2 overlayers were obtained at relatively low temperature. These catalysts were found to incorporate ultra‐small Pd metal and support particles with exceptional reactivity and stability for CO oxidation (under 21 vol % O2 and 10 vol % H2O). In particular, the core (Pd)‐shell (TiO2) structured OMI catalyst exhibited excellent resistance to SO2 poisoning, yielding robust CO oxidation performance at 120 °C for 240 h (at 100 ppm SO2 and 10 vol % H2O). The stability of this new OMI catalyst was explained through density functional theory (DFT) calculations that interfacial oxygen atoms at Pd−O−Ti sites (of oxygen‐saturated overlayers) serve as non‐metal active sites for low‐temperature CO oxidation, and change the SO2 adsorption from metal(d)‐to‐SO2(π*) back‐bonding to much weaker σ(Ti−S) bonding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.