Abstract
A long-wavelength infrared photodetector based on two-dimensional materials working at room temperature would have wide applications in many aspects in remote sensing, thermal imaging, biomedical optics, and medical imaging. However, sub-bandgap light detection in graphene and black phosphorus has been a long-standing scientific challenge because of their low photoresponsivity, instability in the air, and high dark current. In this study, we report a highly sensitive, air-stable, and operable long-wavelength infrared photodetector at room temperature based on PdSe2 phototransistors and their heterostructure. A high photoresponsivity of ∼42.1 AW-1 (at 10.6 μm) was demonstrated, which is an order of magnitude higher than the current record of platinum diselenide. Moreover, the dark current and noise power density were suppressed effectively by fabricating a van der Waals heterostructure. This work fundamentally contributes to establishing long-wavelength infrared detection by PdSe2 at the forefront of long-IR two-dimensional-materials-based photonics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.