Abstract

Development of a competent hydrogen storage material is the foremost task to produce the hydrogen economy feasible. In this work, nitrogen rich porous graphitic carbon nitride (g-C3N4) is decorated with palladium–cobalt alloy nanoparticles through a simple cost-effective synthesis method. It is shown, from the solid-hydrogen gas interaction studies, that Pd3Co/g-C3N4 has a room temperature hydrogen uptake capacity of 5.3 ± 0.1 wt % at 3 MPa pressure irrespective of its small surface area. Through the perfect alloying of cobalt with palladium in the g-C3N4 matrix, the synergic interaction of Pd3Co catalyst centers with g-C3N4 support material is increased by an efficient hydrogen spillover, which has improved the hydrogen uptake capacity of pristine g-C3N4 by about 65%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.